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INTRODUCTION


   Proteins perform diverse biochemical functions by binding to multiple molecules at different 
pockets on their surface. These distinct binding sites are crucial for structure-based drug design, 
making them valuable targets for drug discovery. Drug designers must search for small drug-like 
molecules that can block these pockets on specific proteins related to various diseases. 
Understanding and characterizing these binding pockets is essential to grasp the intricacies of 
molecular recognition and to provide functional annotation for orphan proteins. [8] Rational drug-
design and help in drug side-effects prediction, as well as elucidation of protein function, are very 
important topics that have to be analysed. 

   One way of investigating about this topic is by protein-ligand binding site predictions from a 3D 
protein structure. 3D protein structure is important and has many applications, but it represents only 
one step in the range of many complex computational drug design efforts. There has been many 
methods published so far, but only a narrow selection of those methods are suitable for use in 
automated pipelines or for data processing of large datasets. More so, these approaches require high 
speed and stability, which disqualifies many of the recently composed tools that are either template 
based or available only as web servers. One of the main problems in the ligand-binding prediction 
computational approach is so called pocket ranking which is a question of how to score and sort 
candidate pockets in a way so that the best scored predictions correspond to true ligand binding 
sites. Since the approach that we have used is computational with machine learning as the 
background for the algorithm, this issue was a very important part of this project. [5]	 	 	 


DIFFERENT APPROACHES TO LIGAND BINDING PREDICTION


   Identifying binding pockets is a first step in a structure-based drug discovery and it is followed by 
a more detailed description of the pocket. Pockets are concavities on the protein surface where a 
substrate may bind, but there are also pockets that are referred to as "druggable" pockets and those 
are the ones where small drug-like molecules can attach. Binding pockets can also be defined by 
their chemical space, relationships across different target classes, and their static, transient, or 
dynamic nature. Additionally, pockets can be classified as monomeric or multimeric (composed of 
several subunits) interfacial pockets. The understanding of binding pockets is rapidly evolving, and 
this progress is making developing novel therapies to advance faster which improves the treatment 
of human diseases.


   There are two main categories of methods for identifying binding pockets. One of them is 
geometry-based, while another is energy-based. Geometry-based methods rely on the observation 
that binding pockets are often clefts or cavities in proteins and can be identified through geometrical 
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criteria. They often incorporate physico-chemical information like polarity or charge. The Voss 
Volume Voxelator is one of the examples of this type and it is implemented as a web server. It does 
not require a starting point and it allows researchers to investigate the volumes of macromolecules 
and detect channels. The CAVER method is another one and it can be used to detect channels on 
molecular dynamics trajectories or conformational ensembles. 

   On the other hand, energy-based methods address the issue that not all binding sites are the largest 
pockets or clefts in a protein. Energetic methods build the approximations of free energy potentials 
by force fields, placing probes around the protein surface and calculating binding energies. These 
methods use changeable probes to detect different binding pockets and provide maximal flexibility 
to discriminate between different types of binding sites. [8]

   Other methods include evolutionary, knowledge-based and consensus methods. Evolutionary 
methods include algorithms that make use of sequence conservation estimates, since functional 
residues are more evolutionary conserved, or protein threading. They utilize the idea that 
functionally important residues are conserved during evolution, making them valuable for 
identifying potential binding pockets. One approach, such as LIGSITEcsc, uses a sequence 
conservation measure of neighbouring residues to re-rank the top putative pockets calculated by 
LIGSITEcsc, leading to an improved success rate. [3] 

   Another example of an evolutionary-based method that considers structural information is 
FINDSITE. This algorithm selects ligand-bound structural templates from a database of known 
protein-ligand complexes using a threading algorithm that combines various scoring functions to 
match structurally related target/template pairs. Homologous structures are aligned with the target 
protein using a global structural alignment algorithm, and positions of ligands on superimposed 
template structures are clustered into consensus binding sites. [5]

   Methods like LIGSITE that are based on evolutionary conservation can introduce bias towards 
binding sites with biological ligands. They assume that, since ligands have a biological function, 
then based on that, they are more prone to bind to some particular binding sites, then to some other 
binding sites. Thus, pockets that are not evolutionary conserved could be ignored by this approach 
which would be bad, since these are the pockets that can hold information for a novel binding site 
and function. 

   Method that we implemented is based only on local geometric and physico-chemical features of 
points near protein surface, so it should not be prone to previously explained bias. However, since 
this is a machine learning algorithm, so it has been trained on a particular dataset, a bias might be 
introduced there. This is a general and common issue when implementing machine learning 
techniques. Nevertheless, since the classifier has been trained to predict ligandability of pocket 
points that represent local chemical neighbourhood, rather than the whole pocket; the generalization 
has been applied to correctly predict ligandability of novel binding sites. 
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   This approach takes a PDB structure as an input and then outputs a ranked list of predicted ligand 
binging sites defined by a set of points. The set of regularly spaced points lies on a protein’s 
Connolly surface (Connolly surface is explained further down). These points are called Connolly 
points. The next step is calculating feature descriptors of Connolly points by computing property 
vectors for protein’s solvent exposed atoms, projecting distance weighted properties of the adjacent 
protein atoms onto Connolly points and computing additional features afterwards. Eventually, 
Random Forest is used for the prediction of the ligandability score. Points with high ligandability 
score are clustered to form pocket predictions and pockets are ranked based on cumulative 
ligandability score of their points.       


METHOD FOR RANKING


   A scoring function is a way to order found pockets based on the probabilities of locating them on 
the particular places mapped on the protein. Since pocket identification algorithms are heuristic in 
nature, a scoring function is necessary, because it will provide a measure of confidence in the 
predictions. One way and the most common way for scoring putative pockets, pockets that have a 
really high probability of existing at a particular place on the protein, is to order them by a single 
descriptor such as volume, pocket depth, overall hydrophobicity or surface area. Additionally, 
pocket descriptors can be combined and used all together, as it was demonstrated by Fpocket. [1]

   Fpocket is an open source pocket detection package based on Voronoi tessellation  and alpha 1

spheres written in the C programming language. It is organised around a central library of functions 
in three main programs: Fpocket (to perform pocket identification), Tpocket (to organize pocket 
detection benchmarking on a set of known protein-ligand complexes) and Dpocket (to collect 
pocket descriptor values on a set of proteins). [6] This method has been used in our project to test 
for the ligand binding sites after training data with the corresponding datasets (see below). 

   ConCavity is another approach with the same idea, but on the other hand, it considers the overall 
pocket evolutionary conservation score projected onto pocket grid probes for ranking. [5] It makes 
specific predictions of positions in space that are likely to overlap ligand atoms and of residues that 
are likely to contact bound ligands. The pocket detection methods with the highest success rates in 
the benchmark appear to be those with more sophisticated ranking algorithms. [1] We used this 
method to compare it with previously explained Fpocket and to test for the significance of the 
results. 


 Given a set P := {p1, ..., pn} of sites, a Voronoi Tessellation is a subdivision of the space into n cells, one 1

for each site in P, with the property that a point q lies in the cell corresponding to a site pi iff d(pi, q) < d(pj, 
q) for i distinct from j.
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CONNOLLY SURFACE 


   For studying the protein structure and function, the outer surface of a macromolecule must be 
defined, since that’s the part of the molecule that binds ligands and different macromolecules. When 
it comes to smaller molecules, the van der Waals surface gives a reliable representation of the outer 
surface, but it is different for larger molecules, since most of the van der Waals surface is buried in 
the interior. In 1977, Richards presented a definition by which the molecular surface consists of the 
contact surface and the reentrant surface. [7] The former is the part of the van der Walls surface of 
the atoms and it is accessible to a probe sphere representing a solvent molecule. The latter 
represents the inward-facing surface of the probe sphere when it is in contact with more than one 
atom. There was, however, no method for calculating such surface. 

   In later years, there has been implemented a way of calculating the surface which assumes that the 
rolling of a probe sphere over a molecule is best understood in terms of translational degrees of 
freedom. If the probe is in contact with the molecule, it will have three degrees of freedom and it,  
additionally, looses one, for each atom that it touches. Thus, there are three cases of the number of 
atoms that a probe sphere may simultaneously touch and for each of the cases, a different shaped 
type of surface is generated. Each of the types is defined by the sphere it lies on and a boundary 
contour; each sphere defined by a centre and a radius. These pieces of surface form a joined 
network that cover the protein and they are hold together at common boundary arcs, referred to as 
edges, while the arcs meeting points are named vertices. At each point there is a well-defined 
tangent plane which makes these parts smooth and it is contrary to the van der Waals surface of a 
molecule where sharp cervices represent the atoms' intersections. 

   The Connolly surface is a computational representation of the molecular surface of a molecule, 
typically a protein. It is named after the scientist Andrew Connolly who first introduced this concept 
in 1983. The Connolly surface is constructed by rolling a probe sphere over the van der Waals 
surface of the molecule, as mentioned in the previous paragraph. The probe sphere is usually 
modelled as a water molecule or some other solvent. The surface points at which the probe sphere 
touches the van der Waals surface are then connected to form a continuous surface, which is the 
Connolly surface. The Connolly surface is useful in studying molecular interactions, such as ligand 
binding, because it provides a detailed representation of the protein surface topology, which is 
important for understanding protein-ligand interactions. [2]

   The Connolly surface can be used in the computational algorithms for identifying pockets that 
may be suitable for small molecule binding. Pockets that are being identified are usually defined by 
a set of parameters such as shape, volume and different surface properties. One important feature of 
the Connolly surface is its ability to account for solvent accessibility. When modelled with a probe 
sphere, the Connolly surface can make a reliable distinction between exposed and buried regions of 
the protein surface. This was important in our case of study, because ligands typically bind to 
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exposed regions of a protein, where they can interact with amino acid residues and other molecular 
features. There are many computational tools available for generating and analyzing Connolly 
surface, including software packages like PyMOL, Chimera, and VMD. Our output was made to be 
visualized using Chimera or PyMOL. 

   In general, these tools allow researchers to visualize and manipulate the surface in three 
dimensions, which can be useful for identifying potential binding sites or analyzing protein-ligand 
interactions. Overall, the Connolly surface is a valuable tool in the study of protein-ligand 
interactions and drug discovery. Its ability to accurately represent the molecular surface of a protein 
and account for solvent accessibility makes it an important tool for identifying and characterizing 
ligand binding sites.


REPRESENTING A POCKET


   To represent a pocket, a way of choosing points on the molecule surface is needed. 
LigandMapper.py uses a group of inner points that it has selected by spacing points on the Connolly 
surface evenly. The spacings are made within 4 Å of the closest heavy pocket atom. The next step in 
the process is to make a feature vector to each of the chosen points. Such vector is made first by 
calculating feature vectors for specific pocket atoms, and then afterwards, they are aggregated into 
feature vectors of inner points. The vector is computed based on the properties of the pocket atoms, 
such as their distance from the ligand, element type and solvent accessibility. The aggregation 
process involves combining the computed vectors of the pocket atoms that are closest to each inner 
point and the resulting vector servers as a representation of the local environment around each inner 
point. This vector we used as an input for a machine learning algorithm to predict the ligandability 
of the point. 

  It should be explained that all the features included in the vectors are local, meaning that they are 
calculated based on the spatial neighbourhood of the points that are the nearest. Thus, the shape and 
properties of the whole pocket or protein are not considered in this model. Inner pocket points from 
different parts of the pocket can have very different feature vectors, so this locality has a positive 
impact on the model's generalization ability. However, when considering only local features, there 
is an possible issue of those features not being sufficient to cover the ligand binding quality of 
particular regions of the protein surface where some ligand where some ligand positions could be 
fixed by relatively distant non-covalent bonds. Based on other models that have been using a similar 
approach, it seems that this locality of features actually leads to improvements in terms of pocket 
prediction. At large, this implementation of feature vectors and locality seems to be a good way of 
converting complex objects or data points into a more easily manageable and standardized form.
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SCORING FUNCTION AND RANDOM FOREST AS A PREDICTOR


   The algorithm that we have proposed aims to determine whether certain points within a protein's 
inner pocket are capable of binding to ligands, using machine learning approach for prediction. This 
describes a binary classification problem for supervised learning where as the positive points are 
labeled those that are located within 2.5 Å distance to any ligand atom. 

   Previous studies that implement similar method reported a highly imbalanced set in terms of the 
ratio of positives and negatives, after training on a particular dataset like CHEN11 (different dataset 
are explained below). Additionally, they reported that even after trying a broad of compensation 
techniques such as oversampling or undersampling, they found reduced generalization ability of a 
classifier that has been trained. For this reason, in our training step we have decided not to perform 
any copmenzation techniques and chose a Random Forest as a predictive modelling tool. It seems 
that the Random Forest is fast and robust to the presence of a large number of irrelevant variables. 
Furthermore, it can also handle correlated variables.

   Random forests classifier returns a histogram of class probabilities which is used to rescore the 
putative pockets. After executing the program via command line, a table-like representation of top 
predicted pockets, their scores and probabilities is given as the output, along with the file to be 
opened and observed via Chimera software. Since the point can either be seen as a pocket point or 
not, and so it is binary, the histogram is an ordered pair. The scores is the sum of predicted squared 
positive class probabilities of all inner pocket points. 


score = Σ(P1(Vi)) 


   Previously, there has been trials of scoring based on the mean probability based pocket score, but 
the cumulative one showed the best results. If a size of a correctly predicted pocket vary little from 
the true pocket, it should still be recognized as a true pocket. The higher the score of a putative 
pocket is, the higher the probability of it being a true pocket. Therefore, the last step requires 
reordering the putative pockets in the decreasing order based on their scores.  

   Different parameters can influence different steps of the algorithm. Even while not taking into 
account the hyperparameters of the classifier, there are still a variety of additional parameters that 
should be considered, since they can have the impact on the experiment. For this matter, the default 
values of those parameters have been optimized by linear and grid search and the  performance of 
CHEN11 dataset was used as a reference to optimize parameters e.g. the probe radius of Connolly’s 
surface or ligand distance threshold to denote positive and negative points. 


2
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DATASETS USED FOR MACHINE LEARNING


    For the prediction, the model has been tested on several datasets which are described in this part. 
For each dataset predictions were generated using two algorithms, Fpocket and ConCavity. They 
have been explained in a section previously. 

    

   CHEN11 dataset includes 251 proteins and 476 ligands and it was designed with the intention to 
non-redundantly cover all SCOP families of ligand binding proteins from PDB. 

   DT198 is a dataset of 198 drug-target complexes. 

  MP210 is a benchmarking dataset of 210 proteins in bound state introduced in the MetaPocket 
study. 

    ASTEX is a collection of 85 proteins that was introduced as a benchmarking dataset for molecular 
docking methods. 

   UB48 contains a set of 48 proteins in a bound and unbound state and this dataset has been the 
most widely used for comparing pocket detection methods. It contains mainly small globular 
proteins. 


EVALUATION


   For the evaluation, ligand-centric approach has been used, instead of protein-centric approach. 
Since the goal is to identify every pocket on a particular protein for every relevant ligand in the data 
set, ligand-centric approach accomplishes this task. On the other side, a protein-centric approach 
would only require every protein to have at least one identified binding site. A pocket is considered 
successfully identified if at least one pocket, of all predicted pockets, passes a chosen detection 
threshold. D-ca is defined as the minimal distance between the centre of the predicted pocket and 
any atom of the ligand. A binding site is then considered correctly predicted if D-ca is not greater 
than an arbitrary threshold, which is usually set to 4 Å, because this value corresponds to the 
average radius of gyration for ligand molecules in the datasets (around 4.03 Å). [2] D-cc is defined 
as the distance between the centre of the predicted pocket and the centre of the ligand. It was 
introduced in the Findsite study to compensate for the size of the ligand.

   Since the algorithm is based on physico-chemical properties, if some region on protein’s surface is 
recognised as a true ligand-binding site, that means that there exists a ligand which binds at exactly 
that site. On the other hand then, when looking at the negatives, which correspond to the cases 
where there is no true binding site, but all other points within the putative pockets, it could mean 
two different scenarios. The first one would be that no ligand can, indeed, bind at that place, 
because of the physico-chemical properties that are not favorable for the binding. Taking into 
account that the other case would be that there is no crystal structure where the binding event could 
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happen, but it could be that it has not been found yet, then some of the true positives are incorrectly 
labeled as negative, because of the lack of complete experimental data. [6]
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