Data & Databases

DBW

Outline

* Data modelling and Databases
e Databases. Types. SQL vs noSQL

* Data models

e Database design

* ETLs

* Interaction with Web apps
* MySQL & SQL Language

What is data modelling? What is a Database?

Collection of data organized and stored

* All applications manage data)
according to some purpose.

* Simple data can be managed with
primitive data types and simple
arrays (dictionaries, ...)

* Pile of papers, Flat text file, indexed store,...

 |deally, data is organized following a
specific data model
* Complex data require to design a

* Provide permanent storage for data
data model P 8

structures

* Data models provide Classes in * DBMS (Database management software)

object-oriented programming and are takes care of storing and retrieving data

the basis for de5|gnmg database * MySQL, PostgreSQL, SQLite, Oracle, Access,
structures. MongoDB, ...

* Types

* Relational DB, Column DB, Document DB,
XML DB, ...

Databases & Web Applications

* Databases in Web appls. are used for
e Storing Data and Meta-Data
* Managing user/session credentials

* Databases always need an access

application
* Databases can be accessed directly but this
not practical for end users (permanent
conections, not enough expertise)

* Most usual way is a REST API (a web service)

REST-ful APIs (quick remind)

Web services to serve “resources” (data) using only
HTTP (GET, POST, PUT)

/api/{store}/{id}/option.format?options
/api/pdb/2ki5/entry

{JSON } <xml />

-/ 4 OPEN API

INITIATIVE

http://mmb.irbbarcelona.org/api/pdb/2ki5/entry

SQL vs noSQL

Oracle, MySQL, PostgreSQL,...

* Poorer scaling abilities

* A.C.I.D. (Atomicity, Consistency, Isolation,
Durability)

* More difficult design. Fixed structure.

* Do not map transparently on object-oriented
data

e Libraries everywhere

Google BigTable, MongoDB, Hbase, ...

* Great scalability, but require larger resources

* B.AS.E. (Basically Available, Soft state, Eventually
consistent)

* Map complex data structures directly. No additional
design

e Align better with “modern” data representations
(JSON or XML)

* Libraries everywhere

Fields (Fixed)

Relational databases (SQL) ENNEERER
* Most used in general, and especially in bioinformatics él
* This is changing, however... §

e Data organized in “tables”

e Tables contain a number of “records” (rows)

e Each record has a number of “fields” (columns)

IH

e “Relational” means that logical relationships could be established

between fields on different tables.

* DB manager uses those relationships to build complex queries

* Efficiency on data management depends on a “correct” DB design.

NoSQL Databases

Document Column Graph
Key - Value Based Based Based

amazon . mongoDB ‘77;“‘%@ °»> AllegroGraph

DynamnDB Cassandra (o Franz Inc.

“ iz ‘I‘“D‘ : () Neo4j

Couch DIB HBASE

Data modelling

* Aim: Define the structure of data types and components to be
managed by the application

* First step in designing any application Entity
Protein
Name
* Data entities: everything that should Attributes { Origin
be stored/managed E—

* Entity attributes: information about the entity

Data model building

* |dentify data entities
e Data items that “exist” by themselves

* Decide on data attributes
* Details of every data entity

* |dentify data relationships
 Which attributes relate data entities

* |f a Database is involved
* Define unique identifiers (always useful)
 Normalize (more later)

Protein

!

Protein

Name
Origin

Sequence

Protein

Name
Origin «

!

Organism

»TaxID

Sequence

Protein

Relationships -

R Origin
* Associations between entities '
* Relational DBs include explicit keys Sequence
* O-Oriented DBs and languages often “denormalize” 1:N
including nested objects

Organism-has-Protein

N:N
e 1:1 Rare, entities should be merged (common primary key) LN
* May be necessary to improve efficiency Organism
* 1:N most common TaxID
e The “N” classe includes “1” primary key as attribute , Name
* N:N A new “hidden” entity exists. | ...

* The new entity is 1:N to the original entities. Add attributes as necessary.

NoSQL databases do not handle (in general) relationship, but the concept should be considered in the design

Database (SQL) design phylosophy

e Structure of data should be

* Compact with minimum redundancies
» Data stored only once (consistency)
* Space saving

e Structure oriented to retrieval
* Most Bioinformatics DBs are store once, retrieve many
* Obtaining data quick is required

e Able to grow
» Data evolves, structure should be flexible

* Relational DBs requires known and fixed data structures

* For unforeseen data structures, use noSQL approach!!

DB design

* Depends on the language/Database type

* Traditional Relational Databases
 Saving space and avoiding redundancies is the main issue

* NoSQL databases / O-O Programming

e Space is not an issue, data can be redundant (but consistent),
efficiency in insertion/retrieval is the main issue

DB design

Entities become classes, tables, collections, ...

Attributes become fields (Columns in tables)

Unique identifiers become primary keys
* not NULL, never changes
* Unique identification of a record
* Can be a combination of several fields

In SQL DBs Relationships become “foreign keys”

Protein

Name
Origin

Sequence

L

Thymidylate kinase 8332

POWKE1

P04183

Thymidine kinase, = 9606

cytosolic

Keys are usually integers (often with auto-increment), although can be any

field.

MLIAIEGVDGAG
KRTLVE...

MSCINLPTVLPGS
PSK...

Normalization of Relational DBs

Rules to Reduce (eliminate) data redundancies
* Avoids inconsistencies
* Allows non-complete insertions or deletions
* Make easier queries

1st Normal Form (1NF)

* Unique identifiers. Records are independent to each other. All attributes have single
values. Lists of values show hidden entities

2nd Normal Form (2NF)

» All attributes depend entirely on the entity. Attribute is misplaced or a new entity

3rd Normal Form (3NF)
» Data attributes are independent to each other. Show hidden entitites.

ETLS

Extract, Transform, & Load

e Software designed to populate DBs from the original data sources
e Normally offline command-line scripts
e Typically, scripting languages (Perl, Python)

e Data is usually obtained from text files or from Web Services

Extract:

e Parsing data input

Transform:

e Do the necessary modifications on the data
e Add new “calculated” fields if necessary

Load

¢ |nsert into the DB

From Web apps

* Server side
 All Server-side languages include specific drivers and helpers

* The usual ones issues database commands (SQL, JSON, ...)
* Sresult = Sdb -> mysqgl_query(“SELECT A FROM foo”);
 Sresult = $foo_collection->find(array(‘_id’ => ‘any_id’));

* More elaborated drivers map DB tables/objects into program objects
* Interaction with DB is made in the background
e« Common in pure o0-o languages and programming frameworks

* DB connections are persistent .
e Connection is usually made once at the initialization phase for each script.

* Client side
* Jquery / AJAX may include direct DB connections (not recommended)
e Use API's (recommended)

MySQL

* Created in 1979 by Michael Widenius < MariaDB is an open source
replacement (no differences)
 MySQL 1.0 in 1995

* Drivers
e Uses SQL as query language * PHP: mysqli
* Python: mysql.connector, pymysq|,
e Used in most bioinformatics mysqldb, ...

applications
* Free, easy to install

 Now (v = 5.x) has most features of a
commercial DBMS

Create table example (use helper software)

En

el

COCOCOC e e e

try hd

idCode: VARCHAR(4))

ExpType idExpType: INTEGER (FK)
source_idsource: INTEGER (FK)
compType_idCompType: INTEGER (FK)
header: VARCHAR(S0))

ascessionDate: VARCHAR({20)
compound: VARCHAR(250))
resolution: FLOAT

CREATE TABLE Entry (

1dCode VARCHAR (4)) NOT NULL,

ExpType 1dExpType INTEGER UNSIGNED NOT
NULL,

source idsource INTEGER UNSIGNED NOT NULL,

compType i1dCompType INTEGER UNSIGNED NOT
NULL, o

header VARCHAR (50)) NULL,

ascessionDate VARCHAR (20) NULL,

compound VARCHAR (250)) NULL,

resolution FLOAT NULL,

PRIMARY KEY (idCode),

INDEX Entry FKIndexl (compType idCompType),
INDEX Entry FKIndex3(source idsource),
INDEX Entry FKIndex4 (ExpType idExpType)

MySQL (usual) data types

e Numeric

* Integer
e Used for most keys!!

* Float (M,D)

* Text

 varchar(n)
 varbinary(n)
e text(n)

* blob(n)

* enum (one of ‘vall’,
‘val2’,...)

e set (any of ‘vall’, ‘val2’,...)

e Careful with character
sets!!

e Date/time

Date yyyy-mm-dd

Datetime yyyy-mm-dd hh:mm:ss
Timestamp

Time hh:mm:ss

Year (2| 4)

Be careful with order, can depend on O.S.!!

Safe alternative use strings like
YYYY-MM-DD:HH-MM

e Data initialization options

Auto-increment (automatic key fields)
DEFAULT constant (used if no input)
NOT NULL (error if empty)

Basic SQL

* Table manipulation
* CREATE TABLE, ALTER TABLE, DROP TABLE, RENAME TABLE, CREATE INDEX, DROP INDEX
e Usually done with helper software (Mysqgl Workbench, PhpMyAdmin)

 Storing data
e INSERT INTO table (coll, col2,...) VALUES (vall,val2,...)
e LOAD DATA INFILE ‘file_name’
* REPLACE

* Like INSERT but replaces rows with the same primary key

 UPDATE table SET coll=vall, coln=valn WHERE ‘some_condition’

* Retrieving data
e SELECT coll, FROM tablel, table2,... WHERE ‘some condition’ ORDER BY col

	Diapositiva 1: Data & Databases
	Diapositiva 2: Outline
	Diapositiva 3: What is data modelling? What is a Database?
	Diapositiva 4: Databases & Web Applications
	Diapositiva 5: SQL vs noSQL
	Diapositiva 6: Relational databases (SQL)
	Diapositiva 7: NoSQL Databases
	Diapositiva 8: Data modelling
	Diapositiva 9: Data model building
	Diapositiva 10: Relationships
	Diapositiva 11: Database (SQL) design phylosophy
	Diapositiva 12: DB design
	Diapositiva 13: DB design
	Diapositiva 14: Normalization of Relational DBs
	Diapositiva 15: ETLs
	Diapositiva 16: From Web apps
	Diapositiva 17: MySQL
	Diapositiva 18: Create table example (use helper software)
	Diapositiva 19: MySQL (usual) data types
	Diapositiva 20: Basic SQL

