
Data & Databases
DBW

Outline

• Data modelling and Databases
• Databases. Types. SQL vs noSQL

• Data models

• Database design

• ETLs

• Interaction with Web apps

• MySQL & SQL Language

What is data modelling? What is a Database?

• All applications manage data

• Simple data can be managed with
primitive data types and simple
arrays (dictionaries, …)

• Complex data require to design a
data model

• Data models provide Classes in
object-oriented programming and are
the basis for designing database
structures.

• Collection of data organized and stored
according to some purpose.

• Pile of papers, Flat text file, indexed store,…

• Ideally, data is organized following a
specific data model

• Provide permanent storage for data
structures

• DBMS (Database management software)
takes care of storing and retrieving data

• MySQL, PostgreSQL, SQLite, Oracle, Access,
MongoDB, …

• Types

• Relational DB, Column DB, Document DB,
XML DB, …

Databases & Web Applications

• Databases in Web appls. are used for
• Storing Data and Meta-Data

• Managing user/session credentials

• Databases always need an access
application
• Databases can be accessed directly but this

not practical for end users (permanent
conections, not enough expertise)

• Most usual way is a REST API (a web service)

REST-ful APIs (quick remind)
Web services to serve “resources” (data) using only

HTTP (GET, POST, PUT)

/api/{store}/{id}/option.format?options

/api/pdb/2ki5/entry

http://mmb.irbbarcelona.org/api/pdb/2ki5/entry

SQL vs noSQL
Oracle, MySQL, PostgreSQL,…

• Poorer scaling abilities

• A.C.I.D. (Atomicity, Consistency, Isolation,
Durability)

• More difficult design. Fixed structure.

• Do not map transparently on object-oriented
data

• Libraries everywhere

Google BigTable, MongoDB, Hbase, …

• Great scalability, but require larger resources

• B.A.S.E. (Basically Available, Soft state, Eventually
consistent)

• Map complex data structures directly. No additional
design

• Align better with “modern” data representations
(JSON or XML)

• Libraries everywhere

Relational databases (SQL)

• Most used in general, and especially in bioinformatics

• This is changing, however…

• Data organized in “tables”

• Tables contain a number of “records” (rows)

• Each record has a number of “fields” (columns)

• “Relational” means that logical relationships could be established

between fields on different tables.

• DB manager uses those relationships to build complex queries

• Efficiency on data management depends on a “correct” DB design.

Fields (Fixed)

R
ec

o
rd

s
(v

ar
ia

b
le

)

NoSQL Databases

Data modelling

• Aim: Define the structure of data types and components to be
managed by the application

• First step in designing any application

• Data entities: everything that should
be stored/managed

• Entity attributes: information about the entity

Protein

Name

Origin

….

Sequence

Entity

Attributes

Data model building

• Identify data entities
• Data items that “exist” by themselves

• Decide on data attributes
• Details of every data entity

• Identify data relationships
• Which attributes relate data entities

• If a Database is involved
• Define unique identifiers (always useful)
• Normalize (more later)

Protein

Protein

Name

Origin

….

Sequence

Protein

Name

Origin

….

Sequence

Organism

TaxID

Name

……

Relationships
• Associations between entities

• Relational DBs include explicit keys

• O-Oriented DBs and languages often “denormalize”
including nested objects

• 1:1 Rare, entities should be merged (common primary key)
• May be necessary to improve efficiency

• 1:N most common
• The “N” classe includes “1” primary key as attribute

• N:N A new “hidden” entity exists.
• The new entity is 1:N to the original entities. Add attributes as necessary.

NoSQL databases do not handle (in general) relationship, but the concept should be considered in the design

Organism-has-Protein

1:N

1:N

N:N

Protein

Name

Origin

….

Sequence

Organism

TaxID

Name

……

Database (SQL) design phylosophy

• Structure of data should be
• Compact with minimum redundancies

• Data stored only once (consistency)
• Space saving

• Structure oriented to retrieval
• Most Bioinformatics DBs are store once, retrieve many
• Obtaining data quick is required

• Able to grow
• Data evolves, structure should be flexible

• Relational DBs requires known and fixed data structures

• For unforeseen data structures, use noSQL approach!!

DB design

• Depends on the language/Database type

• Traditional Relational Databases
• Saving space and avoiding redundancies is the main issue

• NoSQL databases / O-O Programming
• Space is not an issue, data can be redundant (but consistent),

efficiency in insertion/retrieval is the main issue

DB design

• Entities become classes, tables, collections, …

• Attributes become fields (Columns in tables)

• Unique identifiers become primary keys
• not NULL, never changes
• Unique identification of a record
• Can be a combination of several fields

• In SQL DBs Relationships become “foreign keys”

• Keys are usually integers (often with auto-increment), although can be any
field.

Protein

Name

Origin

….

Sequence

ID Name Origin Sequence

P9WKE1 Thymidylate kinase 8332 MLIAIEGVDGAG
KRTLVE…

P04183 Thymidine kinase,
cytosolic

9606 MSCINLPTVLPGS
PSK…

… … … …

Normalization of Relational DBs

• Rules to Reduce (eliminate) data redundancies
• Avoids inconsistencies
• Allows non-complete insertions or deletions
• Make easier queries

• 1st Normal Form (1NF)
• Unique identifiers. Records are independent to each other. All attributes have single

values. Lists of values show hidden entities

• 2nd Normal Form (2NF)
• All attributes depend entirely on the entity. Attribute is misplaced or a new entity

• 3rd Normal Form (3NF)
• Data attributes are independent to each other. Show hidden entitites.

ETLs

Extract, Transform, & Load

• Software designed to populate DBs from the original data sources

• Normally offline command-line scripts

• Typically, scripting languages (Perl, Python)

• Data is usually obtained from text files or from Web Services

Extract:

• Parsing data input

Transform:

• Do the necessary modifications on the data

• Add new “calculated” fields if necessary

Load

• Insert into the DB

From Web apps

• Server side
• All Server-side languages include specific drivers and helpers

• The usual ones issues database commands (SQL, JSON, …)
• $result = $db -> mysql_query(“SELECT ^ FROM foo”);
• $result = $foo_collection->find(array(‘_id’ => ‘any_id’));

• More elaborated drivers map DB tables/objects into program objects
• Interaction with DB is made in the background
• Common in pure o-o languages and programming frameworks

• DB connections are persistent .
• Connection is usually made once at the initialization phase for each script.

• Client side
• Jquery / AJAX may include direct DB connections (not recommended)
• Use API's (recommended)

MySQL

• Created in 1979 by Michael Widenius

• MySQL 1.0 in 1995

• Uses SQL as query language

• Used in most bioinformatics
applications
• Free, easy to install
• Now (v ≥ 5.x) has most features of a

commercial DBMS

• MariaDB is an open source
replacement (no differences)

• Drivers
• PHP: mysqli

• Python: mysql.connector, pymysql,
mysqldb, …

Create table example (use helper software)

CREATE TABLE Entry (

idCode VARCHAR(4)) NOT NULL,

ExpType_idExpType INTEGER UNSIGNED NOT
NULL,

source_idsource INTEGER UNSIGNED NOT NULL,

compType_idCompType INTEGER UNSIGNED NOT
NULL,

header VARCHAR(50)) NULL,

ascessionDate VARCHAR(20) NULL,

compound VARCHAR(250)) NULL,

resolution FLOAT NULL,

PRIMARY KEY(idCode),

INDEX Entry_FKIndex1(compType_idCompType),

INDEX Entry_FKIndex3(source_idsource),

INDEX Entry_FKIndex4(ExpType_idExpType)

);

MySQL (usual) data types

• Numeric
• Integer

• Used for most keys!!
• Float (M,D)

• Text
• varchar(n)
• varbinary(n)
• text(n)
• blob(n)
• enum (one of ‘val1’,

‘val2’,…)
• set (any of ‘val1’, ‘val2’,…)
• Careful with character

sets!!

• Date/time
• Date yyyy-mm-dd
• Datetime yyyy-mm-dd hh:mm:ss
• Timestamp
• Time hh:mm:ss
• Year (2|4)

• Be careful with order, can depend on O.S.!!
• Safe alternative use strings like

YYYY-MM-DD:HH-MM

• Data initialization options
• Auto-increment (automatic key fields)
• DEFAULT constant (used if no input)
• NOT NULL (error if empty)

Basic SQL

• Table manipulation
• CREATE TABLE, ALTER TABLE, DROP TABLE, RENAME TABLE, CREATE INDEX, DROP INDEX
• Usually done with helper software (Mysql Workbench, PhpMyAdmin)

• Storing data
• INSERT INTO table (col1, col2,…) VALUES (val1,val2,…)
• LOAD DATA INFILE ‘file_name’
• REPLACE

• Like INSERT but replaces rows with the same primary key

• UPDATE table SET col1=val1, coln=valn WHERE ‘some_condition’

• Retrieving data
• SELECT col1, …. FROM table1, table2,… WHERE ‘some condition’ ORDER BY col

	Diapositiva 1: Data & Databases
	Diapositiva 2: Outline
	Diapositiva 3: What is data modelling? What is a Database?
	Diapositiva 4: Databases & Web Applications
	Diapositiva 5: SQL vs noSQL
	Diapositiva 6: Relational databases (SQL)
	Diapositiva 7: NoSQL Databases
	Diapositiva 8: Data modelling
	Diapositiva 9: Data model building
	Diapositiva 10: Relationships
	Diapositiva 11: Database (SQL) design phylosophy
	Diapositiva 12: DB design
	Diapositiva 13: DB design
	Diapositiva 14: Normalization of Relational DBs
	Diapositiva 15: ETLs
	Diapositiva 16: From Web apps
	Diapositiva 17: MySQL
	Diapositiva 18: Create table example (use helper software)
	Diapositiva 19: MySQL (usual) data types
	Diapositiva 20: Basic SQL

