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Web (HTTP) Servers & Clients

Servers

• Listen at a TCP port (80/443), 

and understand HTTP.

• Data can be text or binary files 

(resources) stored locally in the

server or generated dynamically

by server-side applications

• Example SimpleHTTPServer (Perl, 

Python)

Clients

• Make requests to a server using
HTTP.

• Resources are identified by URLs

• Normal browsers “understand” 
combine information interpreting
HTML/CSS to provide a graphical
output.

• Most browsers can execute
client-side applications (code is
obtained from the server)

http://mmb.pcb.ub.es/formacio/~dbw00/perl/SimpleHTTPServer/SimpleHTTPserver.pl
http://mmb.pcb.ub.es/formacio/~dbw00/python/SimpleHTTPserver.py


Languages involved (web interfaces)

• HTML: Contents management language
• Defines contents and structure of the page, includes the necessary links to all 

elements
• Tag formatted language (…<p>Some text</p>…)

• CSS: Formatting language
• Defines how the contents is represented in the user browsers
• P {font-family:Times; font-family: 10pt; display:block; background-color:black}

• Javascript family: Task execution languages 
• Used for client-side applications
• Plain or in richer variants like Typescript, and frameworks like Angular, React, Vue, …



Languages involved (web services)

XML
Most traditionally used by web applications

• Same structure as HTML, but with no fixed tags

• Requires XML-schema to specify tags and check coherence

<Course id="DBW">

<Acronym>DBW</Acronym>

<Title>Databases and Web applications</Title>

<Students>

<Student id="1">

<name>Josep</name>

...

</Student>

…

</Students>

</Course>

JSON
Increasing replacing XML

• Natively understood by Javascript

• Can be validated using JSON-Schemas (not mandatory)

Course: {
"id": "DBW", 
"Acronym": "DBW",
"Title": "Databases and Web applications",
"Students": [

{"id": 1, "name": "Josep", …},…
]

}

YAML (kind of friendly JSON)
Used mainly for configuration files.

Course:
id: DBW 
Acronym: DBW
Title: Databases and Web applications
Students:

- 1 :
name: Josep

- …
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Definition & types

• A Web application is a dynamic extension of a Web server.
• Adapts to user input
• Can serve non-static information (generated in real-time)
• Uses standard protocols (HTTP(S), SMTP)
• Users interact with the application mainly using Web browsers

• Presentation-oriented
• Generates dynamic Web pages (HTML/CSS/JS) responding to user queries
• Usual way to provide bioinformatics results

• Service-oriented
• Interacts with other applications (XML/SOAP, REST)
• Allows to build automatic workflows for complex analyses



Frontend (interacts with clients)
• Application must be compatible with standard 

web browsers

• HTTP protocol:  GET, POST, (PUT)

• User input comes from URL’s or HTML forms

• Output must be in known languages: HTML, 
CSS, Javascript, XML, JSON

• Output may invoke other programs (plug-ins) 
though MIME types

• Almost obsolete, fully replaced by HTML v5

• HTML v5 include a variety of native 
functionalities 

• Audio/video, SVG graphics, MathML,  
GeoLocalization, parallel processing, …

• Modern browsers are able to run client-side apps (Java 
applets, and Javascript)

• Client-side applications are fully qualified applications,  
interpreted and run by the browser

• Java applets are almost obsolete (still seen in 
bioinformatics) due to security issues

• Javascript is behind dynamic behaviour of modern web 
sites.

• Asynchronous interaction with server (new requests do not require
reload)

• JsMol, NGLview (molecular structures), Jbrowse (genomic data)

• Component libraries for bioinformatics start to be available
(https://ebi-webcomponents.github.io/nightingale/#/)

• Single Page Applications. Full self-contained applications
that run entirely on the browser.

• Client-side apps are generated on the server and sent to
the browser as part (or all) of the output.

https://ebi-webcomponents.github.io/nightingale/#/)


Backend (the part that do the work)

• An application is invoked by web server on receiving the request
• External application (“CGI”)

• Executable running in the server machine. 
Can be written in any language.

• Get input from standard input and writes in the standard output. Web server 
redirects both.

• Server embedded. 
• Web server is able to execute the application as a child process (may require a 

driver)
• Usual languages: Python, NodeJS, Perl, Java
• “Designed for Web” languages: PHP, ASP, .NET, JSP

• Java, Python, JS server-side applications require special servers
• Installed normally as a secondary web server (port != 80)
• The main server acts as a “proxy” 



Model – View - Controller (MVC) concept

• Helps to “rationalize” the structure of a web Applications

• Specially suited for data retrieval, but is generally aplicable

• “Model”: The actual data that is required to anwser the
request (“data model” structure)

• “Controller”: Part of the application that understands the
request and perform the necessary logic

• “View”: Translates formats the data model into the appropriate
output (either HTML, JSON, etc)

• Controllers and views should (ideally) be kept separated in the
code (even in diferent scripts/computers).

• In Single-Page Applications, the “controller” in executed on the
server and the “view” on the client



Transmission details. CGI Protocol
• Common Gateway Interface (CGI)

• Formal interface between Web server 
and external applications

• CGI interface provides

• Environment variables including 
information from the browser-server 
conversation

• POST input data, as standard input

• Redirection of application standard 
output & error to Web stream.

•

• Practical CGI use

• Languages have specific extensions to deal 
(Hide) CGI from the development process

• Input GET and POST, and CGI variables 
available at predefined variables/objects

• No need to process HTTP

• Cookies, authentication, etc.

• Web programming frameworks 
• Slim, Symphony (PHP), Flask, Django (Python)

• Programming helpers acting as an interface 
between CGI and the programming language

• Provide “easy” web applications 
•
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Known issues in web applications
• Time issues

• Web users require “instant” responses

• Most web browsers (and network helpers) may have a short “timeout”

• Application that lasts more that 1-2 mins must be asynchronous

• Persistence, and User recognition
• HTTP protocol is not persistent: Connection closes short time (~20s) after the server answers

• Applications need to recognize returning users
• Authentication (user only must write the login/password once)

• Keep personal preferences, and private data

• Grant access to given resources according to previous requests

• Avoid requesting known data more than once

• Avoid “reloads”



Time issues. Usual strategies (1)
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Time issues. Usual strategies (2)
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Time issues. Usual strategies (3)
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Personalization (Authentication/Authorization)
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Authentication/Authorization schemes

• Server based authentication
• Based on unix-like passwd files (login / passwd)

• Protects folders and sub-folders (.htaccess files)

• Identity via CGI variable (REMOTE_USER)

• May require access to server configuration

• Application based (both authentication and 
authorization)
• Do not require access to server configuration

• Authentication and environment managed by the
application itself (via local DB)

• Full control from the application (login / passwd, SSL 
Keys, …)

• Persistence via Cookies or language specific constructs

• Third party authentication

(single sign-on, SSO)

• Authentication is done by identity

providers (Google, openID, ELIXIR,  ….), or

other apps (eGroupWare, Drupal, …) 

• Users can have a single point for

authentication (SSO)

• Protocols

• OAuth, OpenID Connect

• Bioinformatics world

• Bona fide Researchers

• European Life Sciences Id / ELIXIR



User identification from the application: 
cookies
• Small amount of text information stored by 

the server in the users’ web browser as key 
/value pairs

• Do not require user/password (user do not 
need to be aware of)

• Limited to 4Kb

• Retrieved automatically as part of CGI 
handshake

• Cookies do not identify persons but 
browsers!!

• ID: a unique ID generated by the 
server

• Origin: server URL. Browsers send 
back cookies to the servers that 
created them (no other servers can 
get the data)

• Expiration date. Cookies can last for a 
single session or till a specified date



Web application layout hints
• Static contents (text, images, etc. ) stored as normal web resources

• For optimization, some servers keep them separated from scripts

• Dynamic pages managed by server scripts

• No general rule, depends on language and programming style

• The easy way: Each different screen is managed by a specific script.

• Web frameworks use normally a “routing” mechanism to associate code to incoming URLs

• Single-Page-Applications (http://itsnat.sourceforge.net/php/spim/spi_manifesto_en.php). Manage everything in a 
single client-side applications with asynchronous communication with the server. 

• Global variables

• Each script acts in a separated HTTP transaction!

• All scripts should load the same global environment, usually included from a single file

• Protected/public data

• Protected data should be stored outside of the web directory tree, and be accessed only programmatically

• Output data may be placed inside the web tree if it is already HTML/CSS

http://itsnat.sourceforge.net/php/spim/spi_manifesto_en.php


Web application layout hints

• Temporary data

• Can be stored anywhere

• Most languages provide automatic temporary directories and file names.

• Be aware that applications can be executed by the “web” user, check permissions.

• Should be deleted after use!!

• Beware of multiple concurrent users

• Use request-specific file names for temporary data and results

• Use user-based or process-based directories 

• Think in a queueing system for lengthy operations

• Collect statistics of use!!



DBW - APIs



APIs – Programmatic access

• API = “Application programming interface” 
1. Set of routines, functions, or procedures/methods, offered as a library to be used inside

other software (API = “software library”)
2. Any web service providing remote functionalities to be used inside other software or most

usually as data provider (API = “web service”)

• In bioinformatics the approach is generally used to access data or to allow
communication among application components (“microservices architecture”)

• Strategies: SOAP/XML, XML-RPC (remote executions), REST

• Authentication implicit via Oauth2 / openIDConnect



Microservices architecture



REST (REpresentational State Transfer)

• REST-ful web services

• Used primarily to serve data 

• Data can be pre-processed at the server-side (so becoming a kind or RPC)

• Controlled through HTTP and called using standard URLs

• /api/{store}/{id}/option.format?option

• HTTP interfaces to Data repositories

• HTTP based (GET,  PUT,  POST,  DELETE)

• Allow to GET, PUT (update), POST (insert), and DELETE a resource in the data portal (i.e. a DB)

• Using REST APIs, application components can be independent (and distributed) as long they
communicate using HTTP and a known format



Data exchange languages 

• Data exchange formats
• XML: Most traditionally used by web services (SOAP, RPC) 

• Same structure as HTML, but with no fixed tags

• Requires XML-schema to specify tags and check coherence

• JSON: Data interchange format replacing XML (most popular)
• Natively understood by Javascript

• Both require “schemas” to validate data model 



Programmatic Access (client side)

• Perl
use LWP:Simple;

use JSON;

my $content = decode_json(get(‘http://...’));

• PHP
$data = json_decode(file_get_contents(“http://....”));

• Python
import requests

data = requests.get(‘http://...’).json()



Web service : server side

• Usual web applications but…
• Output is not meant to be shown in browsers (no HTML, CSS, JS)
• Headers required

• Content-type: text/xml | text/plain | application/json | application/x-gzip | image/png

• Define the type of data being sent
• Content-Disposition: attachment; filename=file_name

• Force download (when seen from a browser)
• Access-Control-Allow-Origin: *

• Allow access from any client (to avoid security checks on JS/AJAX)

• Formats can change
• In theory should be requested via HTTP (Accept…) but normally are included in the URL

• Error handled via HTTP codes
• 200 ok, 404 not found, …

• Prevent caching
• Header: Cache-Control: no-cache

• Programming frameworks are very useful here due to the complex routing

• A “quite complex” backend : http://mmb.pcb.ub.es/gitlab/MMBData/MMBApi

http://mmb.pcb.ub.es/gitlab/MMBData/MMBApi


RESTful URLs

•No standard
• A typical schema is

/api/{store}/{id}/option.format?options

ex. http://mmb.pcb.ub.es/api/pdb/2ki5/entry.json

•Documented via
• Ad-hoc help pages
• OpenAPI (a.k.a. Swagger) (recommended)

• ICGC example

https://docs.icgc.org/portal/api-endpoints/#/browser


http://mmb.pcb.ub.es/api/
https://docs.icgc.org/portal/api-endpoints


Full entries and sequences

• /api/pdb/{id}/entry/  /api/pdbMonomer/{id}/entry/
• Full data in XML or JSON

• /api/pdb/{id}.fasta

• /api/uniprot/{id}/entry

• /api/uniprot/{id}.fasta



PDB search options

• /api/pdb/ Search on PDB
• resmin=value, resmax=value Min Max for resolution (XRAY only)

• qcompType=(prot, nuc, prot-nuc, carb, other) Compound types. 

• qexpType=(ELECTRON_CRYSTALLOGRAPHY, ELECTRON_MICROSCOPY, 
FLUORESCENCE_TRANSFER, INFRARED, NEUTRON_DIFRACCTION, NMR, 
SOLID-STATE_NMR, X-RAY) Type of Experiment. 

• query=txt Text query
queryOn=(header, compound, sources, authors)

• sequence=seq Sequence match 
• molTy=(protein | na) Sequence type 

seqType=(exact | regex) Type of sequence match (exact | regular expression )



PDB options for structures

• /api/pdb/{id}/ /api/pdbMonomers/{id}/
• Default: standard PDB coordinates(possible .gz)

• Available filters
• bunit={n} Show Biounit n instead of the Assimetric Unit

• noheaders=1 Skip PDB headers (implicit in the following filters)

• group=(ATOM | HETATM) PDB label selection. (HETATM includes CONECT)

• groupRes=[!](POLAR | APOLAR | NUC | PROT) Residue type selection. "!" negates

• groupAt=[!](POLAR | APOLAR | NOH | BACK | NABACK) Atom type selection, "!" 
negates

• filter=[!][RES]nres:chain.atom/model Atom filter using J(s)Mol format ("!" negates 
selection)
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