
Web, Web applications &
APIs

DBW

Outline
• Common architectures

• Time issues

• Authentication/authori
zation. Cookies &
session persistence

• Hints

• Web services & APIs

• REST

• Languages

• Examples

• Web basics

• HTTP servers and browsers

• Languages

• Software

• Concept and types of Web
applications. Web services

• Languages involved

• The Model-View-Controller
paradigm

• Transmission details. CGI
Protocol

Web application anatomy

Web browser

USER

Web server

Application

DB

CLIENT

SERVER DB SERVER

Front-End

Back-End

Web service Client

External Apps

Web (HTTP) Servers & Clients

Servers

• Listen at a TCP port (80/443),

and understand HTTP.

• Data can be text or binary files

(resources) stored locally in the

server or generated dynamically

by server-side applications

• Example SimpleHTTPServer (Perl,

Python)

Clients

• Make requests to a server using
HTTP.

• Resources are identified by URLs

• Normal browsers “understand”
combine information interpreting
HTML/CSS to provide a graphical
output.

• Most browsers can execute
client-side applications (code is
obtained from the server)

http://mmb.pcb.ub.es/formacio/~dbw00/perl/SimpleHTTPServer/SimpleHTTPserver.pl
http://mmb.pcb.ub.es/formacio/~dbw00/python/SimpleHTTPserver.py

Languages involved (web interfaces)

• HTML: Contents management language
• Defines contents and structure of the page, includes the necessary links to all

elements
• Tag formatted language (…<p>Some text</p>…)

• CSS: Formatting language
• Defines how the contents is represented in the user browsers
• P {font-family:Times; font-family: 10pt; display:block; background-color:black}

• Javascript family: Task execution languages
• Used for client-side applications
• Plain or in richer variants like Typescript, and frameworks like Angular, React, Vue, …

Languages involved (web services)

XML
Most traditionally used by web applications

• Same structure as HTML, but with no fixed tags

• Requires XML-schema to specify tags and check coherence

<Course id="DBW">

<Acronym>DBW</Acronym>

<Title>Databases and Web applications</Title>

<Students>

<Student id="1">

<name>Josep</name>

...

</Student>

…

</Students>

</Course>

JSON
Increasing replacing XML

• Natively understood by Javascript

• Can be validated using JSON-Schemas (not mandatory)

Course: {
"id": "DBW",
"Acronym": "DBW",
"Title": "Databases and Web applications",
"Students": [

{"id": 1, "name": "Josep", …},…
]

}

YAML (kind of friendly JSON)
Used mainly for configuration files.

Course:
id: DBW
Acronym: DBW
Title: Databases and Web applications
Students:

- 1 :
name: Josep

- …

Web application anatomy

Web browser

USER

Web server

Application

DB

CLIENT

SERVER DB SERVER

Front-End

Back-End

Web service Client

External Apps

Definition & types

• A Web application is a dynamic extension of a Web server.
• Adapts to user input
• Can serve non-static information (generated in real-time)
• Uses standard protocols (HTTP(S), SMTP)
• Users interact with the application mainly using Web browsers

• Presentation-oriented
• Generates dynamic Web pages (HTML/CSS/JS) responding to user queries
• Usual way to provide bioinformatics results

• Service-oriented
• Interacts with other applications (XML/SOAP, REST)
• Allows to build automatic workflows for complex analyses

Frontend (interacts with clients)
• Application must be compatible with standard

web browsers

• HTTP protocol: GET, POST, (PUT)

• User input comes from URL’s or HTML forms

• Output must be in known languages: HTML,
CSS, Javascript, XML, JSON

• Output may invoke other programs (plug-ins)
though MIME types

• Almost obsolete, fully replaced by HTML v5

• HTML v5 include a variety of native
functionalities

• Audio/video, SVG graphics, MathML,
GeoLocalization, parallel processing, …

• Modern browsers are able to run client-side apps (Java
applets, and Javascript)

• Client-side applications are fully qualified applications,
interpreted and run by the browser

• Java applets are almost obsolete (still seen in
bioinformatics) due to security issues

• Javascript is behind dynamic behaviour of modern web
sites.

• Asynchronous interaction with server (new requests do not require
reload)

• JsMol, NGLview (molecular structures), Jbrowse (genomic data)

• Component libraries for bioinformatics start to be available
(https://ebi-webcomponents.github.io/nightingale/#/)

• Single Page Applications. Full self-contained applications
that run entirely on the browser.

• Client-side apps are generated on the server and sent to
the browser as part (or all) of the output.

https://ebi-webcomponents.github.io/nightingale/#/)

Backend (the part that do the work)

• An application is invoked by web server on receiving the request
• External application (“CGI”)

• Executable running in the server machine.
Can be written in any language.

• Get input from standard input and writes in the standard output. Web server
redirects both.

• Server embedded.
• Web server is able to execute the application as a child process (may require a

driver)
• Usual languages: Python, NodeJS, Perl, Java
• “Designed for Web” languages: PHP, ASP, .NET, JSP

• Java, Python, JS server-side applications require special servers
• Installed normally as a secondary web server (port != 80)
• The main server acts as a “proxy”

Model – View - Controller (MVC) concept

• Helps to “rationalize” the structure of a web Applications

• Specially suited for data retrieval, but is generally aplicable

• “Model”: The actual data that is required to anwser the
request (“data model” structure)

• “Controller”: Part of the application that understands the
request and perform the necessary logic

• “View”: Translates formats the data model into the appropriate
output (either HTML, JSON, etc)

• Controllers and views should (ideally) be kept separated in the
code (even in diferent scripts/computers).

• In Single-Page Applications, the “controller” in executed on the
server and the “view” on the client

Transmission details. CGI Protocol
• Common Gateway Interface (CGI)

• Formal interface between Web server
and external applications

• CGI interface provides

• Environment variables including
information from the browser-server
conversation

• POST input data, as standard input

• Redirection of application standard
output & error to Web stream.

•

• Practical CGI use

• Languages have specific extensions to deal
(Hide) CGI from the development process

• Input GET and POST, and CGI variables
available at predefined variables/objects

• No need to process HTTP

• Cookies, authentication, etc.

• Web programming frameworks
• Slim, Symphony (PHP), Flask, Django (Python)

• Programming helpers acting as an interface
between CGI and the programming language

• Provide “easy” web applications
•

Web browser

Web server

Standalone

application

"CGI"

DB

Std Input

Std Output

CLIENT side SERVER
DB SERVER

Soft. Client

Architectures (I) The classical model (obsolete)

The web server
only moves data

SPAppl

HTML/CSS

XML/JSON

JSON

Web browser

Web server

DB

Embed App

CLIENT side SERVER
DB SERVER

Soft. Client

Architectures (II) Embedded Application Server

Application is executed by the Web
server.
Requires específic combinations of
servers and languages:

-Apache + PHP
-Java based applications

SPAppl

HTML/CSS

XML/JSON

JSON

Web browser

Web server

DB

CLIENT side SERVER
DB SERVER

Framework with a

Secondary

server

Soft. Client

Architectures (III) Application frameworks

Application

Frameworks are language-
specific

-Flask or Django – Python

-Javascript (NodeJS)

SPAppl

HTML/CSS

XML/JSON

JSON

Known issues in web applications
• Time issues

• Web users require “instant” responses

• Most web browsers (and network helpers) may have a short “timeout”

• Application that lasts more that 1-2 mins must be asynchronous

• Persistence, and User recognition
• HTTP protocol is not persistent: Connection closes short time (~20s) after the server answers

• Applications need to recognize returning users
• Authentication (user only must write the login/password once)

• Keep personal preferences, and private data

• Grant access to given resources according to previous requests

• Avoid requesting known data more than once

• Avoid “reloads”

Time issues. Usual strategies (1)

Input validation

Data

Confirmation

Output

Execution

queue

Data ok

End script

Output

Data

Email to UserSynchronous
Asynchronous

Time issues. Usual strategies (2)

Input validation

Data

Wait

until end

Execution

Data ok

Output

Data

Finish?

No

Yes

“polling”

Time issues. Usual strategies (3)

Input validation

Data

Execution

Data ok

Output

Data

User’s Workspace

Errors

Personalization (Authentication/Authorization)

Web browser Web server

Application

User/Session

DB
CLIENT SERVER

A DB stores history of user connections and activities

Identity
providers

Third party AA

Authentication: Identify Users

Authorization: Manage users’ privileges

Authentication/Authorization schemes

• Server based authentication
• Based on unix-like passwd files (login / passwd)

• Protects folders and sub-folders (.htaccess files)

• Identity via CGI variable (REMOTE_USER)

• May require access to server configuration

• Application based (both authentication and
authorization)
• Do not require access to server configuration

• Authentication and environment managed by the
application itself (via local DB)

• Full control from the application (login / passwd, SSL
Keys, …)

• Persistence via Cookies or language specific constructs

• Third party authentication

(single sign-on, SSO)

• Authentication is done by identity

providers (Google, openID, ELIXIR, ….), or

other apps (eGroupWare, Drupal, …)

• Users can have a single point for

authentication (SSO)

• Protocols

• OAuth, OpenID Connect

• Bioinformatics world

• Bona fide Researchers

• European Life Sciences Id / ELIXIR

User identification from the application:
cookies
• Small amount of text information stored by

the server in the users’ web browser as key
/value pairs

• Do not require user/password (user do not
need to be aware of)

• Limited to 4Kb

• Retrieved automatically as part of CGI
handshake

• Cookies do not identify persons but
browsers!!

• ID: a unique ID generated by the
server

• Origin: server URL. Browsers send
back cookies to the servers that
created them (no other servers can
get the data)

• Expiration date. Cookies can last for a
single session or till a specified date

Web application layout hints
• Static contents (text, images, etc.) stored as normal web resources

• For optimization, some servers keep them separated from scripts

• Dynamic pages managed by server scripts

• No general rule, depends on language and programming style

• The easy way: Each different screen is managed by a specific script.

• Web frameworks use normally a “routing” mechanism to associate code to incoming URLs

• Single-Page-Applications (http://itsnat.sourceforge.net/php/spim/spi_manifesto_en.php). Manage everything in a
single client-side applications with asynchronous communication with the server.

• Global variables

• Each script acts in a separated HTTP transaction!

• All scripts should load the same global environment, usually included from a single file

• Protected/public data

• Protected data should be stored outside of the web directory tree, and be accessed only programmatically

• Output data may be placed inside the web tree if it is already HTML/CSS

http://itsnat.sourceforge.net/php/spim/spi_manifesto_en.php

Web application layout hints

• Temporary data

• Can be stored anywhere

• Most languages provide automatic temporary directories and file names.

• Be aware that applications can be executed by the “web” user, check permissions.

• Should be deleted after use!!

• Beware of multiple concurrent users

• Use request-specific file names for temporary data and results

• Use user-based or process-based directories

• Think in a queueing system for lengthy operations

• Collect statistics of use!!

DBW - APIs

APIs – Programmatic access

• API = “Application programming interface”
1. Set of routines, functions, or procedures/methods, offered as a library to be used inside

other software (API = “software library”)
2. Any web service providing remote functionalities to be used inside other software or most

usually as data provider (API = “web service”)

• In bioinformatics the approach is generally used to access data or to allow
communication among application components (“microservices architecture”)

• Strategies: SOAP/XML, XML-RPC (remote executions), REST

• Authentication implicit via Oauth2 / openIDConnect

Microservices architecture

REST (REpresentational State Transfer)

• REST-ful web services

• Used primarily to serve data

• Data can be pre-processed at the server-side (so becoming a kind or RPC)

• Controlled through HTTP and called using standard URLs

• /api/{store}/{id}/option.format?option

• HTTP interfaces to Data repositories

• HTTP based (GET, PUT, POST, DELETE)

• Allow to GET, PUT (update), POST (insert), and DELETE a resource in the data portal (i.e. a DB)

• Using REST APIs, application components can be independent (and distributed) as long they
communicate using HTTP and a known format

Data exchange languages

• Data exchange formats
• XML: Most traditionally used by web services (SOAP, RPC)

• Same structure as HTML, but with no fixed tags

• Requires XML-schema to specify tags and check coherence

• JSON: Data interchange format replacing XML (most popular)
• Natively understood by Javascript

• Both require “schemas” to validate data model

Programmatic Access (client side)

• Perl
use LWP:Simple;

use JSON;

my $content = decode_json(get(‘http://...’));

• PHP
$data = json_decode(file_get_contents(“http://....”));

• Python
import requests

data = requests.get(‘http://...’).json()

Web service : server side

• Usual web applications but…
• Output is not meant to be shown in browsers (no HTML, CSS, JS)
• Headers required

• Content-type: text/xml | text/plain | application/json | application/x-gzip | image/png

• Define the type of data being sent
• Content-Disposition: attachment; filename=file_name

• Force download (when seen from a browser)
• Access-Control-Allow-Origin: *

• Allow access from any client (to avoid security checks on JS/AJAX)

• Formats can change
• In theory should be requested via HTTP (Accept…) but normally are included in the URL

• Error handled via HTTP codes
• 200 ok, 404 not found, …

• Prevent caching
• Header: Cache-Control: no-cache

• Programming frameworks are very useful here due to the complex routing

• A “quite complex” backend : http://mmb.pcb.ub.es/gitlab/MMBData/MMBApi

http://mmb.pcb.ub.es/gitlab/MMBData/MMBApi

RESTful URLs

•No standard
• A typical schema is

/api/{store}/{id}/option.format?options

ex. http://mmb.pcb.ub.es/api/pdb/2ki5/entry.json

•Documented via
• Ad-hoc help pages
• OpenAPI (a.k.a. Swagger) (recommended)

• ICGC example

https://docs.icgc.org/portal/api-endpoints/#/browser

http://mmb.pcb.ub.es/api/
https://docs.icgc.org/portal/api-endpoints

Full entries and sequences

• /api/pdb/{id}/entry/ /api/pdbMonomer/{id}/entry/
• Full data in XML or JSON

• /api/pdb/{id}.fasta

• /api/uniprot/{id}/entry

• /api/uniprot/{id}.fasta

PDB search options

• /api/pdb/ Search on PDB
• resmin=value, resmax=value Min Max for resolution (XRAY only)

• qcompType=(prot, nuc, prot-nuc, carb, other) Compound types.

• qexpType=(ELECTRON_CRYSTALLOGRAPHY, ELECTRON_MICROSCOPY,
FLUORESCENCE_TRANSFER, INFRARED, NEUTRON_DIFRACCTION, NMR,
SOLID-STATE_NMR, X-RAY) Type of Experiment.

• query=txt Text query
queryOn=(header, compound, sources, authors)

• sequence=seq Sequence match
• molTy=(protein | na) Sequence type

seqType=(exact | regex) Type of sequence match (exact | regular expression)

PDB options for structures

• /api/pdb/{id}/ /api/pdbMonomers/{id}/
• Default: standard PDB coordinates(possible .gz)

• Available filters
• bunit={n} Show Biounit n instead of the Assimetric Unit

• noheaders=1 Skip PDB headers (implicit in the following filters)

• group=(ATOM | HETATM) PDB label selection. (HETATM includes CONECT)

• groupRes=[!](POLAR | APOLAR | NUC | PROT) Residue type selection. "!" negates

• groupAt=[!](POLAR | APOLAR | NOH | BACK | NABACK) Atom type selection, "!"
negates

• filter=[!][RES]nres:chain.atom/model Atom filter using J(s)Mol format ("!" negates
selection)

	Diapositiva 1: Web, Web applications & APIs
	Diapositiva 2: Outline
	Diapositiva 3: Web application anatomy
	Diapositiva 4: Web (HTTP) Servers & Clients
	Diapositiva 5: Languages involved (web interfaces)
	Diapositiva 6: Languages involved (web services)
	Diapositiva 7: Web application anatomy
	Diapositiva 8: Definition & types
	Diapositiva 9: Frontend (interacts with clients)
	Diapositiva 10: Backend (the part that do the work)
	Diapositiva 11: Model – View - Controller (MVC) concept
	Diapositiva 12: Transmission details. CGI Protocol
	Diapositiva 13: Architectures (I) The classical model (obsolete)
	Diapositiva 14: Architectures (II) Embedded Application Server
	Diapositiva 15: Architectures (III) Application frameworks
	Diapositiva 16: Known issues in web applications
	Diapositiva 17: Time issues. Usual strategies (1)
	Diapositiva 18: Time issues. Usual strategies (2)
	Diapositiva 19: Time issues. Usual strategies (3)
	Diapositiva 20: Personalization (Authentication/Authorization)
	Diapositiva 21: Authentication/Authorization schemes
	Diapositiva 22: User identification from the application: cookies
	Diapositiva 23: Web application layout hints
	Diapositiva 24: Web application layout hints
	Diapositiva 25: DBW - APIs
	Diapositiva 26: APIs – Programmatic access
	Diapositiva 27: Microservices architecture
	Diapositiva 28: REST (REpresentational State Transfer)
	Diapositiva 29: Data exchange languages
	Diapositiva 30: Programmatic Access (client side)
	Diapositiva 31: Web service : server side
	Diapositiva 32: RESTful URLs
	Diapositiva 33
	Diapositiva 34: Full entries and sequences
	Diapositiva 35: PDB search options
	Diapositiva 36: PDB options for structures

