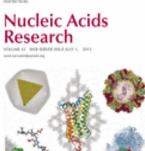
DBW – Databases and Web development

Josep Ll. Gelpí. gelpi@ub.edu

Aims

- Review a number of technologies to handle bioinformatics data:
 - Computer communication, design of web applications, basic database design and optimization.
 - -This is NOT a programming course, it is about designing and building applications in an heterogenous scenario


• The final objective is to built a **fully operative application** using the appropriate combination of the techniques reviewed.

Bioinformatics & Internet

• Bioinformatics Tools and data should be available through web

- Ex. Nucleic Acid Research reviews:
 - –Database Issue (January) 1170 DBs
 - -Web Server Issue (July) 1200 Servers

Open Access

COLFORD

2----

NAR Database issue recommendations for authors

- "The pre-submission enquiry must present a working web accessible database "
- "The quality, quantity and originality of data as well as the quality of the web interface are the most important. Good data with a poor interface or vice versa are never sufficient for consideration."
- "Do get a domain name for your website. URLs to specific IP addresses/ports are unlikely to stand the test of time."
- (...)

Nucleic Acids Research, Volume 35, Issue suppl_1, 1 January 2007, Pages D1–D2

https://academic.oup.com/nar/article/35/suppl_1/D1/1 088333

Web applications by access type

• Web interfaces

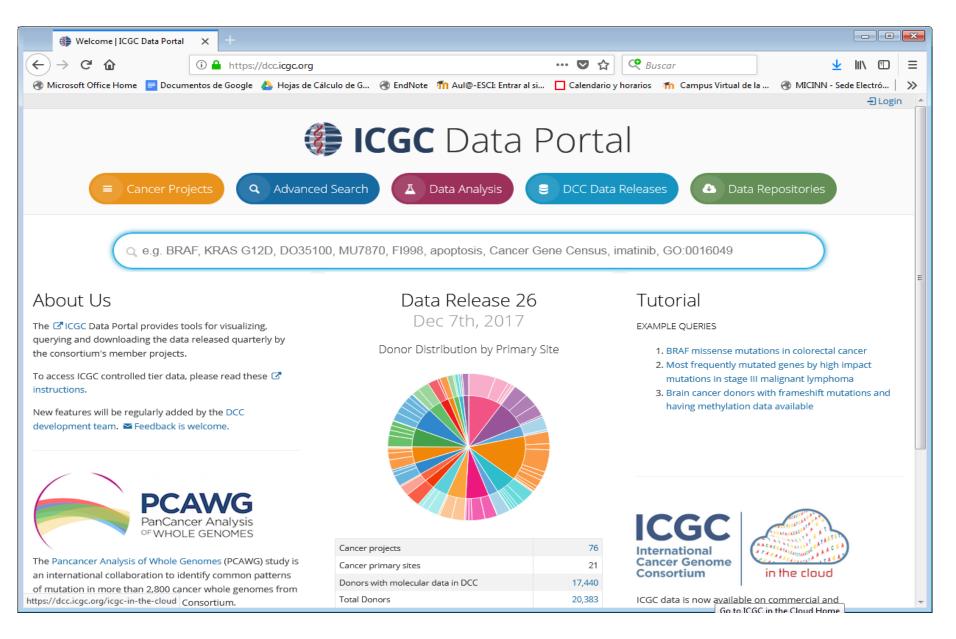
- Provide a user friendly interface (web based) to "human" users
 - Users known how to use the interface
 - There is no need to install software
 - Single operations (no large scale)

• Web services & APIs

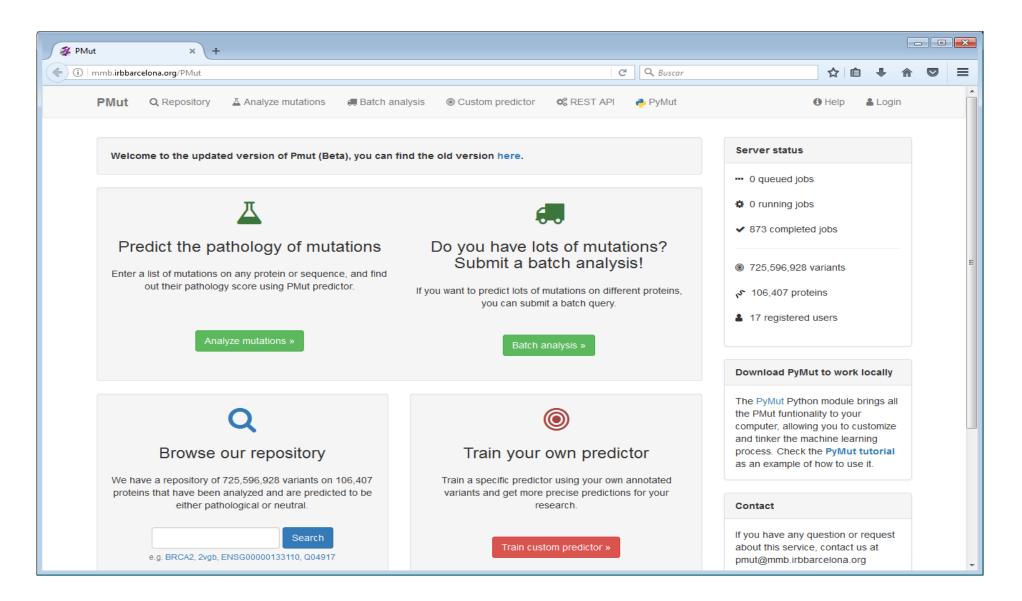
- Provide a programmatic interface (using Web protocols)
- Intented to interact with software, not with humans
 - Well-defined data formats required.
 - Adequate for large scale operations
- Modern applications will normally offer both
 - Web frontend is normally just another client of the API's

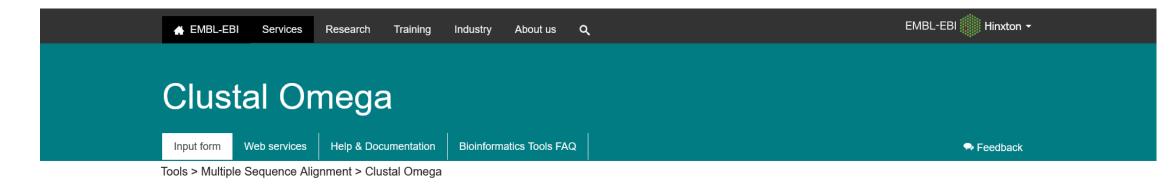
- Application styles
 - Access to data
 - Friendly interface to data repositories (aka Data Portals)
 - Web Interfaces to stand-alone software
 - Collect input parameters, run, and redirect output
 - Workbenches (e.g. Galaxy)
 - On-purpose applications & DBs

Data Portals


UniProt BLAST Align Peptide search ID mapping SPARQL

Release 2022_05 | Statistics 🎂 🏠 Help


Find your protein UniProtKB • Search Advanced | List 📢 Feedback Examples: Insulin, APP, Human, P05067, organism_id:9606 Help UniProt is the world's leading high-quality, comprehensive and freely accessible resource of protein sequence and functional information. Cite UniProt "


Project Data Portals

Or both...

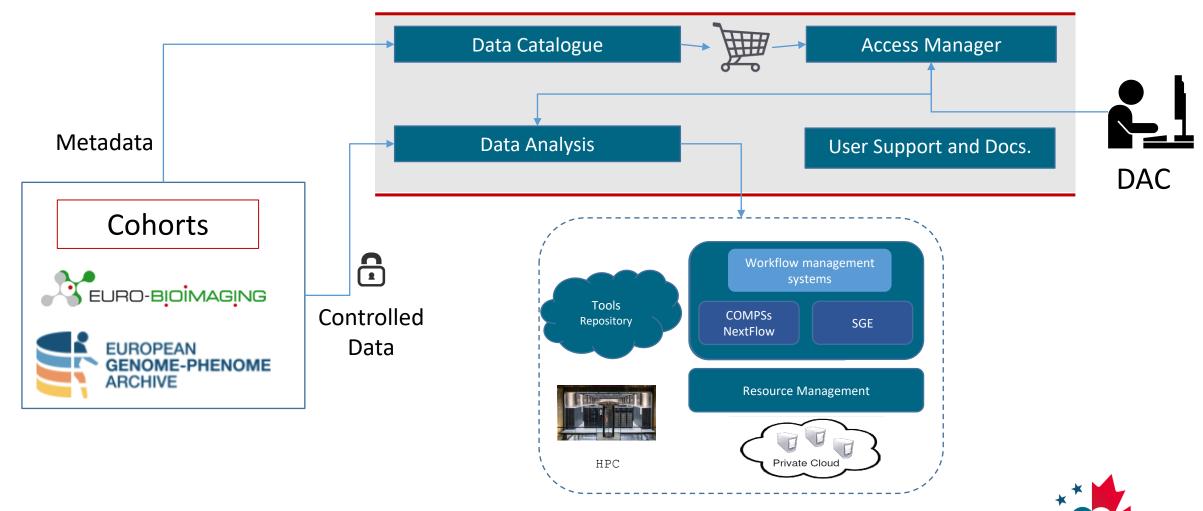
Web interfaces to bioinformatics applications

Multiple Sequence Alignment

Clustal Omega is a new multiple sequence alignment program that uses seeded guide trees and HMM profile-profile techniques to generate alignments between **three or more** sequences. For the alignment of two sequences please instead use our pairwise sequence alignment tools.

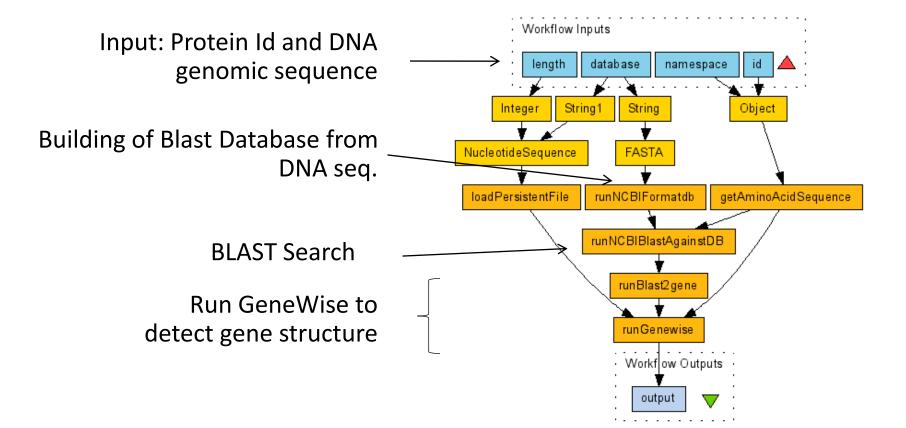
Important note: This tool can align up to 4000 sequences or a maximum file size of 4 MB.

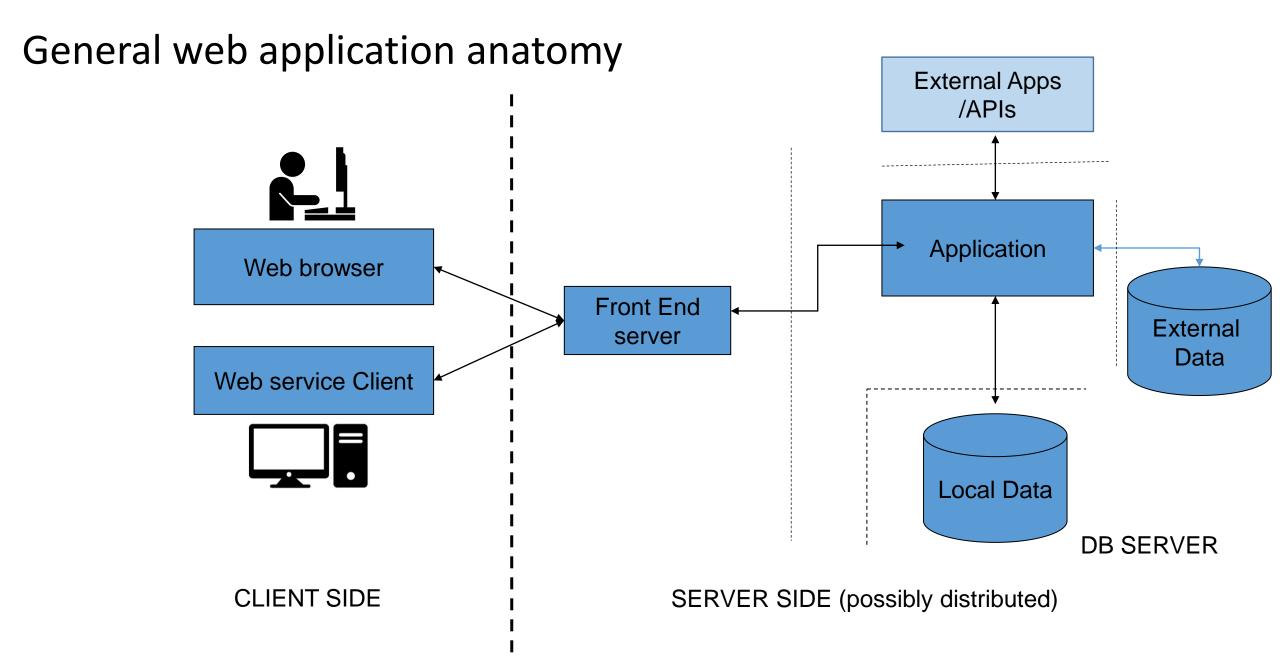
STEP 1 - Enter your input sequences	
Enter or paste a set of	
PROTEIN	•
sequences in any supported format:	

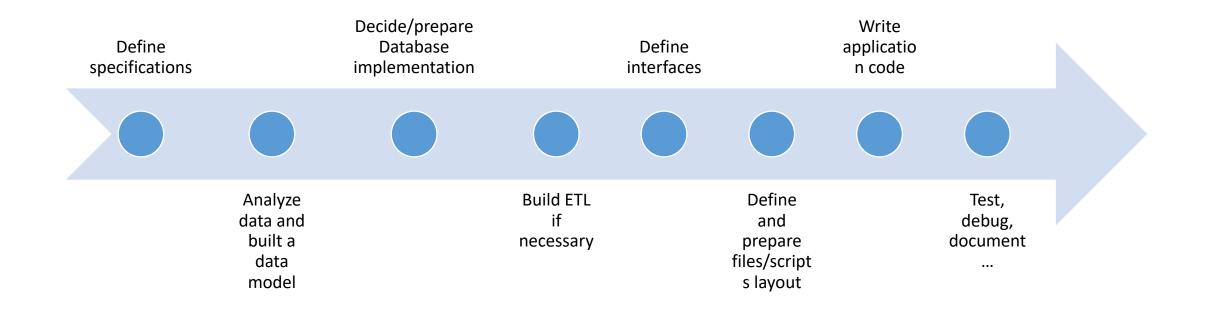

Workbenches

📕 Galaxy / ELIXIR-ES	👫 Flujo de Trabajo Visualizar Datos Compartidos 🕶 Administración Ayuda 🕶 Usuario 🕶 🌲 📻 🏢		
Herramientas ☆ ≔	Welcome to biobb.usegalaxy.es, the INB's Galaxy server for the	Historial 🕄	* + 🗆 🌣
Buscar herramientas	BioExcel Building Blocks software library.	buscar conjuntos de datos	88
📩 Cargar Datos		RSV 5C69	
		104 shown, 114 deleted	
Get Data		850.44 MB	
Send Data	BioExcel Building Blocks, a software library for interoperable biomolecular simulation	218: 5c69Trimer_10ns.tpr	● / ×
Collection Operations	workflows	- ·	• / ×
Text Manipulation	The BioExcel Building Blocks (biobb) software library is a collection of Python wrappers on top of popular biomolecular simulation tools, adapted here to be run on Galaxy. The library offers a layer of interoperability	217: mygmx_trjconv_str.gr o	
Convert Formats	between the wrapped tools, which make them compatible and prepared to be directly interconnected to build	216: mygmx_image.trr	● / ×
Filter and Sort	complex biomolecular workflows.	215: mygmx_rgyr.xvg	● / ×
Join, Subtract and Group	BioBB Galaxy tools	214: mygmx_rms.xvg	• / ×
Fetch Alignments/Sequences Statistics	BioBB demonstration workflows (including Galaxy)		
	Additional servers for BioBB's:	213: mygmx_rms.xvg	④ ∦ ×
Graph/Display Data BIOEXCEL BUILDING BLOCKS		212: mymdrun.xvg	● 🌶 ×
Get Data	BioBB REST API BioBB Workflows Web portal	211: mymdrun.cpt	● 🖋 ×
Haddock	BioExcel Building Blocks, a software library for interoperable biomolecular simulation workflows. P. Andrio, A.	210: mymdrun.xtc	● 🖋 ×
Structure Utils	Hospital, J. Conejero, L. Jordá, M. Del Pino, L. Codo, S. Soiland-Reyes, C. Goble, D. Lezzi, R. M. Badia, M. Orozco & J. Ll. Gelpi. Scientific Data, 6(1),169 (2019)	209: mymdrun.log	● / ×
Setup and Simulation (GROMACS)		208: mymdrun.edr	● # ×
			>

Integrated platforms




euCanSHare


https://eucanshare.bsc.es

Bioinformatics web-services and workflows

Building a (web) application, usual steps

- Web site(s)
 - Course materials:
 - <u>https://formacio.bq.ub.edu/</u>
 - Personal sites:
 - https://formacio.bq.ub.edu/~uXXXXXX

• Server

-SSH Access

- ssh formacio.bq.ub.edu –l uXXXXXX
- Password dbw_uXXXXXX
- -SCP
 - scp uXXXXX@formacio.bq.ub.edu ...
- MySQL/MongoDB Access
 - Localhost only
 - DBs on demand

Software to install

- Ideally Linux
 - Also Windows WLS or Mac
- From Linux distributions
 - A Web server (one of)
 - Apache (with PHP 7.x)
 - Nginx (better for Python apps)
 - MYSQL (or MARIADB) server
 - MYSQL Workbench or phpMyAdmin
- Your preferred software editor
- MongoDB (optional)
 - Install drivers for PHP/python if needed

Evaluation

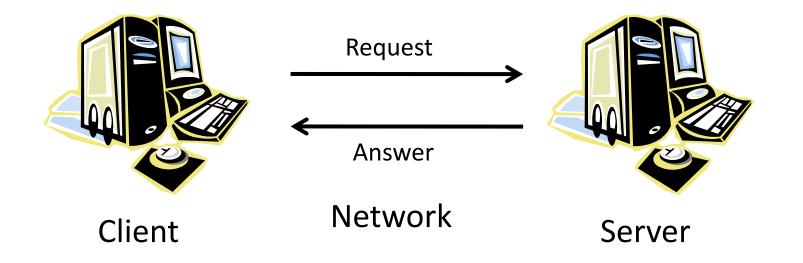
- Personal web site (20%)
- Exercices, in-class projects (20%)
- Web application project (60%)
 - Progress presentations
 - A fully operative web application using a local Database

Evaluation

- Web application project
 - 3-4 people / group
 - Free subject (bioinformatics preferred)
 - Should include DB management, web interface, users' management (Mysql or MongoDB)
 - May use fake data if necessary
 - Available at the personal web sites of all team members
 - Preferred languages: PHP, Python, ...
 - Source code at github or equivalent

Evaluation

- Web application project
 - Steps (Deadlines):
 - Initial specification (Presentation 18th Jan)
 - Data analysis & Database design (Presentation 27th Jan)
 - Project prototype Demo (Presentation 10th Feb)
 - Mid development review (meeting around 23th Feb)
 - Final application (End of Term)
- Fully Installed and functional on course server
 - PHP projects will use Apache
 - Python projects will use uwsgi/nginx (Flask dev server not acceptable)


Basic computer communication protocols

Aim & Outline

- Understand the basic components of computer communication protocols
 - -Concepts of client and server
 - -Addressing servers and data
 - Computer addresses (MAC Address, IP Address, DNS)
 - Ports
 - Resource identification: URL/URI concepts
 - -Client/server transactions
 - HTTP protocol

Some definitions ...

•Clients and Servers require logic and physical addresses

•Clients and servers refer both to computers and to software components

•Data transferred requires MetaData (meta-information)

Nature of data

Request (what to do)

Applications involved (email, web, etc.)

How it works: TCP/IP

- Packet switching
 - Packet switching breaks the signal in small fragments
 - Users have the idea of a dedicated line but, in fact, it is not.
- Computers connected to internet should have addresses/ports
 - MAC Address: Address of the physical interface
 - IP Address: Unique address of the computer
 - Unique Host name
 - Ports to point to specific applications

Network layer	
Metadata	
Data	

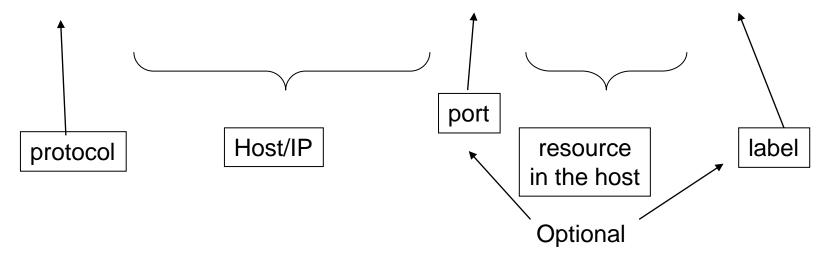
Identifiying computers

IP Addresses

- Allow to find destination irrespective of the nature of the network media.
- Each device has a "unique" IP address
- IPv4: 32 bits (4 x 1 byte (0-255) numbers)
 - Max: 2^{32} : aprox 4.3 x 10^9
 - P. ex. 161.116.72.181 (formacio.bq.ub.edu)
 - The 4 levels are hierarchical
- Some addresses are reserved, and some networks are "local"
- (Coming but still not used) IPv6: 128 bits (16 bytes). Max: 2¹²⁸ (3.4 x 10³⁸)

Name addresses

- IP addresses are not easy. Most hosts have also a "name":
 - f. ex. <u>www.ncbi.nlm.nih.edu</u>
- Host names have a structure similar to IP addresses:
 - Top domains (.es, .edu, correspond to full class domains and subnets are indicated by prefixes).
 - ub.edu (161.116.x.x)
 - bq.ub.edu (161.116.72.x)
 - Formacio.bq.ub.edu (161.116.72.181)


Identifying applications within servers: **Ports**

- Each host has one (at least) IP address but has several ports to identify services within
- Ports are 2-Byte numbers.
 - 0-1023 "Well known ports" (Telnet: 23, FTP: 21, HTTP: 80, HTTPS: 443, ..) (only root)
 - 1024-49151 "Registered ports", usually managed by applications (MySQL: 3306) (only root)
 - 49,152-65,535 "Dynamic and/or private ports" freely usable.
- Communication to ports triggers the specific application to deal with the data
- However, different ports from the official ones can be used to:
 - Hide applications, Have more then one server in the same IP address, Hide servers in internal networks.

URI/URLs

• Resources must be identified in a way that includes all the necessary details:

https://formacio.bq.ub.edu:443/index.htm#top

Missing parts of the URL are added by the client by default!!

Client – server communication (HTTP)

- Most Web Applications use HTTP (hypertext transfer protocol), although sometime FTP, SMTP
- HTTP is a client-server protocol
 - Link between client and server is dynamic
 - Usually limited to a single transaction
 - Requests composed by a **query** operation and a variable set of headers (Metadata)
 - Answers: headers + data

- Relevant Operations: GET, POST
 - GET: Simple retrieval, all information included in the URL
 - Simple queries, static information
 - Usable from as hypertext links
 - POST: Upload and retrieval
 Query defines the resource, and input data follows
 - PUT: Similar to POST. Used in APIs
- Relevant HTTP headers
 - Content-type (POST): input data format
 - Content-type (Answer): Data MIME type (text/html, image/jpg, ...)
 - Location: Redirects browser
 - Set-cookie: Set a "cookie" on users' software.